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T H E  E F F E C T  OF THE R E I N F O R C E M E N T  S T R U C T U R E  

O N  T H E  H E A T  C O N D U C T I V I T Y  OF S H E L L S  OF R E V O L U T I O N  W I T H  

A S Y S T E M  OF T U B E S  FILLED W I T H  A L I Q U I D  H E A T - T R A N S F E R  A G E N T  

Yu. V.  Ne mirovsk i i  and A. P. Yankovski i  UDC 536.21 

The initial boundary-value heat-conduction problem for shells rei~forced by tubes filled with 
a flowing liquid heat-transfer agent is considered. The dependence of the coefficients in the 
heat-conduction equations on the thermophysical characteTistics of the composition phases, re- 
inforeement parameters, and shell geometry is studied. A comparative analysis of the stationary 
temperature fields in thin shells of revolution of different Gaussian curvature is perfo~ned for 
various reinforcement structures and heat-exchange regimes. It is shown that the tempera- 
ture distribution in the shells depends strongly on the reinforcement structure and the shell 
geometry, which opens up new possibilities of designing optimal structures. 

The structural elements designed for heat accumulation and transfer are widely used in modern l)ower 
installations, transport systenis, jet engines in aerospace engineering, laser and MHD installations, etc. The 
potentialities of using honiogeneous materials in these installations have ahnost been exhausted. Further 
progress is associated with composite structures, which ensure the discrete, continuous, or discrete-continuous 
distl:ibution of thermophysical characteristics and heat sources. These structures can be reinforced by curvi- 
liimar tubes filled with a flowing liquid heat-transfer agent. The heat conductivity of these structures equipped 
with a system of "heat tubes" hms not yet been investigated. 

1. Fo rmula t ion  of the P rob lem.  We consider a shell reinforced by N families of constant-cross- 
section tubes filled with an incompressible fluid. In the absence of internal heat sources and in the orthogonal 
curvilinear coordinates xi (i = 1, 2, 3), the linear heat conduction of the shell is governed by the following 
system [1]: 
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i=1  j = l  ,i 

+ E [ A~;(AtA2A:O-I 
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E(ALA2A:~A72wkTk,i),i - AkwkO~(Tk) - 2hkrkla~k(T - Tk)]; 
i=1  

(i.i) 

c~,pkT~,,t + c~.p~,vkO~:(Tk) AkO~( k) + 2hkr[. L ( T -  Tk), l; 1.2.. N: (1.2) 

A~j = E f~'~-l  {lh'fl~'Ja-L[(Atk - ,\c)~] + aAc] + (-1)i+Jl~,pl~:ra[~]A~h! + (a - f~)Acl]-'}. 
k 

p = 3 - i ,  r = 3 - j ,  i . j = l ,  2, (1.3) 
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A33 = a.lz., + (a - f t )Ac  1 , C = ccpcA + f tkCkRk,  
k k 

"Q = E ~ '  a = 1 -- E w~. A =- a - ~]: (1.4) 
k k 

0 0 
Ok = lkiA-('  ~ + l~:2AY2t" Ox2'  lkl = cosak, lk2 = sinai, .  (1.5) 

Here T is the temperature of the composite shell, C and A i j  a r e  the reduced heat capacity and effective heat 
conductivities of the shell, respectively, )~k, ck, Pk, and Tk are the linear heat conductivity, specific heat, bulk 
density, and temperature of the fluid that  fills tubes of the kth family, respectively, Pc and Rk are the bulk 
densities of the binding material and the material of tile tubes of the kth f',~nily, respectively, cc and Ck are 
tile specific heats of the binding material and the tubes  of the kth family, ~,spectively, Ac, ,klk, and A2~: are 
the linear heat conductivities of the isotropic binder and  the transversely isotropic tube of the kth family in 
the longitudina! .ud tra:,,'=','-~e directions, respectively, rk = const is the internal cross-sectionM radius of the 
tubes of the kth famil5 is tile coefficient of heat  exchange between the tubes of the kth family and 
tim fluid, vk is tile longitu~mm component of the fluid flow rate in tim tubes of the kth family [since the fluid 
is incompressible (Pk = c o n s t )  and tim cross sections of the tubes are constant,  we have vk = const along 
the tube axis], ~k and w.k are the intensity of reinforcement by the tubes of the kth family and the intensity 
of the fluid that  fills these tubes (volume content of tile fluid of the k th  family in the volume element of 
tile heat exchanger), c~. is the angle of reintbrcement by the tubes of tile k th  family, reckoned from the xl 
direction, and Ai are tile Lamb parameters; the fixed value of the parameter x3 corresponds to the elementary 
reinforced la:'er, and summation is per~'ormed from 1 to N if the limits are not indicated. The qmmtities wt., 
9,t., and A nmst satisfy the inequalities 

~,'k~>0, 9.~,/>0 ( k = l , 2  . . . .  , N ) ,  A = l - - E ( ~ v k + f ~ k ) > 0 .  (1.6) 
k 

The conditions of constant ('ross sections and constant  internal cross sections of the tubes of the kth 

family have the form [2] 

(A2A'3~klkl) , l  + (AiA3~,'kl~:.,),',, = O, (A2A'39tklk1),l + (AiA3f~klk2),2 = 0 (1 ~ k <~ N). (1.7) 

Coxtsequently, the complete system of equations tha t  describes the linear heat conductivity of a shell 
reinforced by heat tubes of constant cross section is determined by equations and relations (1.1)-(1.7). which 
nmst be supl)lenmnted by tlm initial and boundary conditions for the temperatures T and T~,. At the e, dge 
S~. where the tubes of the kth family enter the stroll, the values of tile fimctions wk and f~k nmst be specified 

[2]. 
It is noteworttkv that.  in practice, the heat conductivities, specific heat, and intensity of the internal 

heat sources of a composite material are assumed to be known from experiinents. However. analysis of 
relations (1.1), (1.3), and (1.4) shows ttLat in heat tube-reinforced shells, the reduced heat eonductivities, the 
specific treat, and tim ,,tficiency of heat exchange depend greatly not only on tile thermophysical characteristics 
of the phases of the composition, but also on tim reinforcenmnt parameters: the angle ~k, tile intensities Q,~, 
and wk, and the dimension of the tube internM cross section r~,. 

2.  H e a t  C o n d u c t i v i t y  o f  T h i n  S h e l l s  o f  R e v o l u t i o n  R e i n f o r c e d  b y  H e a t  T u b e s .  In analysis 
of shell-type thin-walled structures, it is expedient to reduce the three-din~ ~ional heat-conduction i)roblem 
descrit)ed by system (1.1), (1.2) to a two-dimensiom~l problem. To this end, we employ the Bubnov Galerkin 
procedure in the variable :r:~, ~ssmning that the coefficients of corresponding expansions of the functions T 
and T~, depend on the variables t, xl,  and x2. Moreover, in view of the fact that  the shell is thin. we can 
confine our analysis to three terms in these expansions [3]: 

2 2 

T = E T ( " ) ( t , x , , x 2 ) ( x 3 )  ", Tk = E T ( n ) ( t ,  x l , x 2 ) ( x a )  " (k = 1 , 2 , . . . , Y ) .  (2.1) 
n=O n=O 
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The Lam6 parameters Ai (A3 = 1), the reinforcement parameters ilk, ~'k, and ak, and the functions C and 
Aij can be  assumed to be independent of x3 [2]. 

We assume that the heat exchange between the ambient medium and the faces of the shell of thickness 
H -- 2h = c o n s t  obeys the Newton law. As a result, the closed system of equations tha t  describes the heat 
conduction of tiffs structure has the following form: 

i=1,2 j = l , 2  / , i  

E [ Ak(AIA2)-I Z (A1A2A~2waOa,i), i  - ,\k~vkO~((gk) + 
k i=1,2 

- 2hkr [ l~k(O -- Ok) + 15AkWk(Ok -- O k / H ) / h ]  + B O  + D _ T _ ~  + D + T + ~ ,  

cA, pkOk,, + c~-pkvkOk(Ok) = ;~k0~(Ok)  + 2 h k r ~ : ~ ( O  -- O k ) ,  

c . ~(~) + Ckpk'vkOk(T~ ~)) kPk-t k,t 

= A~,O2(T ( ' ) )  + 2hk"~" {[(a2'_, -- a l 2 ) O / H  - a.22T+~r + a t 2 T _ ~ ] / A  - T~l)}, (2.2) 

ckpkOk,t + ckpkvkOk(Ok) = AkO2(Ok) + 2h, k'r~. t { O / H  + 4/{-'[(alt - a 2 1 ) O / H  

+ ~,.~, T + ~  - a H T _ ~ ] / ( 1 5 A )  - 0k}.  

T (~ = O / H  - b2T (t)/3. T (t) = [(a22 --  a l 2 ) O / H  - a22T+or  + a l 2 T _ o e ] / / X ,  

T (2) = [(alt - a._,l)e/H + a21T+er - a l l T - c ~ ] / A ,  T~ ~ = (9ek/H - 50k)/4, 

T} '2) = 15(0k - O k / H ) / H  2 (k = 1, 2 . . . . .  N),  

Here B = a { - ( # +  + # _ ) [ H  - I  + h(att  - a2l)l /(3A) + ( .-  - u+)(a22 - a le) / (2A)},  D+ = a[#+ + (#+ - 
I t - ) h a 2 2 / A  - (It+ + # - ) H h a 2 t / ( 3 A ) ] ,  D_  = a[lt_ + ( # -  - # + ) h a l 2 / A  + (it+ + # - ) H h a H / ( 3 A ) ] ,  A = 
a[ ta22 - a12am, a H =  - ( m +  + h ), al',. = - H ( m +  + hi3) ,  a'.,t = m_  + h, a22 = - H ( m _  + h i3 ) ,  m+ = A33/#+, 
and 2"+oo and  IL+ are, respectively, the ambient temperature  and the coefficients of heat exchange between 
the shell and the ambient inediunl from the side of the "external" (subscript plus) and "internal" (subscript 
nfinus) faces. Similar equations can be obtained in the case where the different te inperature  and heat-tim( 
boundary conditions or mixed boundary conditions [1] are specified on the shell faces. 

Consequently, for thin shells, the three-dimensional heat-conduction equations (1.1) and (1.2) are 

reduced wi th  sufficient accuracy to equations of the type (2.2) for the desired flmctions O, Ok, T~ t), and Ok, 
which depend  only on the time t and two spatial variables xt  and :r2. 

To formulate the initial boundary-~fiue problem corresponding to system (2.2), we integrate the initial 
and bounda ry  conditions over the thickness of the shell. As a result, we obtain the initial and boundary 

conditions for the functions O, Ok, T~ l), and 0k. 
~,Ve use the examI)le of simple structures to illustrate the effect of the reinibrcement s t ructure on the 

temt)erature field. Below, we confine ourselves to thin shells of revolution reinforced axisymmetrically over 

equidistant surfaces. 
Since the initial boundary-~"alue problem corresponding to system (2.2) is linear and its solution is 

periodic in the x2 coordinate, we can expand the desired functions O, Ok, T (U, and Ok and the known 
flmctions T•162 in Fourier series in x2 [4] and reduce the problem to a system of ordinary differential equations. 

Upon  the axisymmetric thermal action, these equations become 

727 



C~t,  = ( A t n ) - ! ( R A - ( l a A l l T ,  l )A + E [ k k ( A , n ) - ! ( n A - ( t o a k T k , t ) A  
k 

- AkwklldATl(It , .nA-(IT~:,t) , l  -- 2h, t:r-[.lo~'~,(T - T~.)], 
(2.3) 

c~:pk:l'<t + c~:pkvt, lklAT!T~.,t  = kt:l~:tA71(lklA-[~T~.,~),l + 2h~:r / ! (T - T~.). 

k = l , 2  . . . . .  N, 

where T = T (~ = O / H  and Tk = T~ ~ = O~, /H.  
3.  S o l u t i o n  o f  t h e  P r o b l e m  a n d  D i s c u s s i o n  o f  R e s u l t s ,  We consider the heat conduct ion for 

three types  of  shells of revolution characterized by: 

1) T h e  zero Gaussian curvature ( K  = 0) (conical shell): 

n ( z ~ )  = [(,~ - x ~  ' - ( x ,  - x l ) n ~  - ~g). (3.1) 

2) T h e  positive Gaussian curvature (K  > 0) [the shell shaped like an elliptic paraboloid (SSEP)]: 

R ( x t ) = a  : v ~ l - c + b ,  (3.2) 

where 

~ = ( n ' - n  ~ - c -  _ ,  , b = n 0 _ ,  : , .0_c, c<:, ,0.  (a.a) 

3) T h e  negative Gaussian curvature (K < 0) [the shell shaped like a one-sheeted hyperboloid  of 

R(xl )  = v/a 2 + b2(xl - -  C) 2. 

revolution (SSOH)]: 

where 

a 2 = [ ( R ( ' ) 2 ( x l  - c) 2 - ( R  !)2(x(~ - c ) 2 ] / [ ( x l  t - c) 2 - (x  0 - c)2]. 

b" = [ ( n ! )  ~ - ( R ~  - ~)'-' - (:,,? - ~)"1, cO .< c <. c !.  

~0 = ( n !  , : , / _  n " x ~ ) / ( R '  - n ~  ,, '  = ( n ~  + R ! * ~  + n " ) .  

(3.4) 

(3.5) 

In relations (3.1), (3.3), and (3.5), it is assumed that  x~ > x ~ Rt > R ~ and R / = R(x~), where i = 0, 1: 

the p a r a m e t e r  c enables us to specify the families of shells (3.2) and (3.4): note that  tim SSEP amt SSOH 
degenerate  into conical shells as c -+ - o c  and c --+ c ~ c I , respectively. 

In the axisynmmtric case, the conditions of constant  cross-sectional areas of the tubes (1.7) have the 
form [2] 

Rf~: cos (~k = Q*k = const, Rwk cos (tk = a,'.k = co!s t  (L: = 1, 2 , . . . ,  N) ,  (3.6) 

where Q.]r and  aa.k deterlnine tim total cross-sectional areas and internal cross-sectional areas of the tubes 
of the k th  family, respectively, with an accuracy to constant  multiplier. These parameters  can be the initial 

da ta  of the problem.  

We s tudy  the effect of tile reinforcement s tructure on the temperature  field in shells with equal  charac- 

teristic dimensions (the lengths along the axes of revolution and the radii of the edges) for the santo boundary  
conditions. To compare different reinforcement variants, we use the criterion of equal total  cross-sectional 

areas ~ .k  and  equal internal cross-sectional areas o-'.k of the tubes of the kth family, which corresponds to 

the equal fluid flow rate per unit t ime for any reinforcement variants at the santo vahles of vk. 
We consider the shells of  revolution with edges of the radii R ~ and R l (R l = 3/? ~ for :r ~ = 0 and 

:z'[ = 3R ~ respectively. The  shells are made of copper [Ac = 400 W / ( m - d e g ) ,  % = 419 . l / ( k g .  deg), 
and p~ = 8940 k g / m  3 [5]) and reinforced by two fiunilies ( g  = 2) of steel tubes [Aik = 45 W / ( m -  deg), 

Ck = 568 J / ( k g -  deg), and Rk = 7780 kg /m 3, where i, k -- 1, 2]. Tim tubes are located symnmtr ica l ly  in 

the meridional  direction (c~2 = - c t l )  and characterized by the intensities wl = w2, f~t = Q2, w.1 =- co.2, 
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D,~ = [}.2, and f~.k ---- 0.25w.k. The  quantities w. k in (3.6) are determined from the additional condition 
A >/ 0.2. The tubes are filled with transfornmr oil (Ak = 0.107 W / ( m - d e g ) ,  Ck = 1905 J / ( k g .  deg), and 
Pk = 856 kg /m 3 [6]) which flows with the same velocity (vt = v2). 

The equations governing the stat ionary axisymmetric  heat conduction of tile shells under the conditions 
of thermal insulation at its faces are obtained from (2.3) by ignoring terms which contain the partial deriv'atives 

with respect to t. We write these equations in dimensionless form: 

(A l r ) - l ( rA - [ ta s  + 2s[(Alr)-l(rA-[la,,tT~) ' 

- a31A~-' cos a t  (Ai -1 cos cqT~)' ] - 2~tHl  (T - Tt) = 0; (3.7) 

zAi -t c o s a l ( A [  -t cosc~tT~)' - VIA-} t cosatT~ + Ht(T  - Tt) = 0, T,, = Tt, (3.8) 

where ~ = AIA~ -t,  Vt = clptvlR~ t, (3.9) 

Hi = 2hl(R~ /~li = AllA~ ,-t, r - -  R / R  ~ 

(the prinm denotes differentiation with respect to the dimensionless variable x = x t /R~  
For the above-chosen materials  of the binder and tubes, the coefficient/~tt in (3.7) and (3.9) is of order 

1 and s = 2.675- 10 -4. For R ~ = 1 m and vl = 0.01 m/see,  we obtain V1 = 40.77. The constant H1 in (3.7)- 
(3.9) can be of order 1 provided the internal d iameter  of the tubes 2rl is sufficiently small. Consequently, s 
is a small paranmter. The au thors  showed in [1] tha t  by virtue of the small value of' s, it suffices to use the 
asymptotic solution of system (3.8), (3.9). TO this end, the terms containing s are ignored in the system, 
which simplifies tile corresponding boundary-vahm problenl. In this case, tile function Tt needs only one 
boundary condition at the edge S : ,  where the fluid flows into the shelh Tt (S~") = Tts. 

We analyze the following reinfbrcement vari~mts: 1) meridioiml reinforcenmnt where two families of 
tubes are located in the meridional directions (a t  = ct2 = 0); 2) spiral reilfforcement where the tubes are 
hwated at an angle :~A. = ( -1 )kTr /4  (k = 1, 2); 3) spiral reinforcenlent where the tubes are located at an angle 
c~k = (-1)~:~r/3 (k = 1, 2); 4) reinforcement in the asymptotic  directions [7], which is typical of the SSOH: 

tan(~k = ( - 1 ) k v / R R " / ( 1  + (R')2), k = 1.2 (3.1(}) 

(in this case, the reinforcement trajectories are rectilinear). 
Figures 1-3 show the distr ibution of the tempera ture  T in the conical shell, tim SSEP (c = -0.01R~ 

and the SSOH (c = 0.5R~ respectively, for various reinforcenmnt w(~riants and }mat-eXchange regimes (the 

dimensionless x is lai(t off as the abscissa). The  tempera ture  

T(x  ~ = T ( x l )  = 250~ ( 3 . 1 1 )  

is specified at the edge x ~ where tile oil flows into the shell and Tt (x ~ = 20~ Figure 4 shows the distribution 
of the fluid temperature Tl in the  conical shell (curves with the same numbers in Figs. 1-4 refer to the same 
reinforcement variant or treat-exchange regime). A similar distribution of Tt is observed for the fluid that 

fills the tubes in the SSEP and the SSOH. 
Curves 1 refer to the case where the heat exchange between the tubes and tim fluid is absent (the internal 

surfaces of the tubes are thermal ly  insulated or the tubes contain no fluid). In this case, the temperatures 
T and T, remain constant. Curves 2-4 characterize tim temperature distribution in the oil and in the shells 
reinforced at different angles [~, = 0, a~, = +7r/4, and (~, = +7~/3 (k = 1. 2), respectively] for the same 
heat-exchange regimes (~ = 2.7- 10 -4, Vt = 40, and Ht  = 4). For tim same heat-exchange paranmters, an 
increase in the reinforcenmnt angle fi'om 0 to 7r/3 leads to an abrupt decrease in the temperature of the shells 
(curves 2-4 in Figs. 1-3), whereas the fluid tempera ture  remains ahnost the santo (curves 2-4 in Fig. 4). 
The reasons are the following. As a criterion of comparison between the reinforcement variants, we chose tim 
condition of equal total cross-sectional areas and the condition of equal internal cross sections of the tubes, 
i.e., the equality of the quanti t ies  w.k and f~.k (3.6) in all the variants. As the reinforcement angle increases 
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from 0 to 7r/3, tile length of the capil lary tubes in the shell incre~es; provided tile fluid flow rate remains the 

same, this leads to an increase in the  duration of the hea t  exchange between tim fluid element, which moves 

along the tube, and tile tube  wall. At the same t ime,  ttm amount of shell material decreases (A decreases 
because of the increase in wk and l]~:), which intensifies its cooling (curves 2-4 in Figs. 1-4). 

Curves 5 and 6 characterize the t empera ture  distr ibution in the shells l~inforced in tim meridionat 

direction (e~k = 0) but for o ther  heat-exchange regimes. Curves 5 refer to the case where the oil flow rate  is 
increased by a factor of 5 (lit = 200 and Hi -- 4). This  leads to a slower increase in the fluid t empera tu re  

Tl [it follows from (3.8) tha t  T~ -~ 0 ms V1 -~ oo and x = 0] and to a more intense heat exchange between 

the fluid and the tubes compared  to the case represented by curves 2 in Figs. 1-4 (ak -- 0, V1 = 40. and 

Hi = 4). Curves 6 correspond to the case where the internal  diameters of  the tubes are decre~ed  by a factor 
of 5 (Vi = 40 and Hi  = 20) for the  initial fluid flow rate ,  whereas their number is increased by a factor of 

25. In this cruse, the total  area of  the internal cross sections of the tubes remains the same (the flmctions w~: 

and l~a. are the same in all the s t ruc tures  reinforced in the  meridional directions). As one would expect ,  the 

decrease in the cross-sectional a rea  of the tul)es and the increase in their number intensi~, the heat exchange 

between the shell an(1 the fluid. Moreover. the out le t  t empera tu re  of the oil in the conical shell increases 

by a factor of 2.12 compared to the cruse represented by  curve 2 in Fig. 4. In all the shells coi~sidered, the 
minimmn tempera tu re  ahnost  halves (curves 2 and 6 in Figs. 1-3). 

Curve 7 in Fig. 2 refers to the meridional reinforcement  of the SSEP with a different geometry [c = 

- 1 0 R  ~ in (3.2)] for the same heat-exchange regime (171 = 40 and Hi  = 4); curves 7-9 in Fig. 3 characterize 

the t empera ture  distribution in the  SSOH of different geomet ry  [in (3.5), c /R  ~ = 0.5, 0, and - 1 ,  respectively] 
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TABLE 1 

Curve Minimum temperature in the shell, ~ 

No. conical shell SSEP SSOH 

250.0 
128.6 
92.6 
59.0 

119.6 
74.4 

250.0 
130.1 
96.1 
62.6 

121.3 
76.5 

129.2 

250.0 
100.9 
65.2 
38.6 
91.3 
62.3 
76.2 

103.3 
123.8 

reinforced in tile asymptot ic  directions (3.10) for Vl = 40 and HL = 4. Compar i son  of curves 2-4 and 7 in Fig. 3 
shows that ,  for the santo heat-exchange regimes, tile reinforcement in the  rectilinear asympto t ic  directions, 

which is the simplest from the practical  viewpoint, does not ensure the  mos t  intense heat  removal from the 
shell [in the sense that  the t empera tu re  in the SSOH with spiral re inforcement  at tile angles c~k = +~r/4 and 

ak = =t=~'/3 is smaller than  that  upon reinforcement in the asympto t ic  directions (3.10) (curves 3 and 4 in 

Fig. 3 lie below curve 7)]. 
However, not 0nly the reinforcement structure but  also the shape  of the shell affects the teml)erature 

distribution. Table 1 lists the minimum temperatures for the conical shell, the SSEP, and the SSOH. hlspec- 
tion of Table I shows tha t  of the three types of shell, the SSOH is cooled most  intensely and the SSEP is 

cooled least intensely far the santo reinforcement structures and heat -exchange regimes. This  is due to the 

following facts. Since the values of w,~. and t2,~: in (3.6) are tim same in all the variants, the functions wk and 
tit, del)end strougly r tile radius of  tlle shell R(xt) for tile santo angles of  reinforcement ak: the smaller the 
radius R, the greater the values of ~k attd l~t:, and, hence, the lower the  intensity of distr ibution of tile basic 
shell material  A [see (1.4)] and tile more intensely it is cooled with o ther  conditions bring equal (the reinforce- 

ment s t ructure  and the heat-conduction regi,ne). For example, as xl  increases, the radius R(x l )  of the SSOH 
with c = 0.SR ~ (curves 2-7  in Fig. 3) first decreases from the value of R ~ to the value of R(c) (the parameter  

c in (3.4) deter,nines the position of tile throat line of the SSOH middle surface [71) and then incre~ses up to 

tile value of R l, but the values of the radius R(xt)  do not exceed R ~ in the  interval x ~ ~< xl ~< 2 c -  x ~ = R ~ 
Tile SSOH is cooled more intensely than  the conical shell and the SSEP,  since R(xl)  > R ~ for xt > x ~ for 

these shells. Moreover, the radius R of the conical shell waries as xt  [R ' (x l )  = const], whereas the ra(lil,s R of 

tile SSEP with c = - 0 . 0 1 R  ~ increases abruptly, in the neighborhood of  the  edge x ~ [,~,,~,,(xl)0, ~-,-0, +oo], and at 

the points remote froln this ed.ge, R changes insignificantly and remains  gTeater than the radius of the conical 
shell. Therefore, with other conditions being equal, the SSEP is cooled less intensely than  the conical shell. 

Tile shape of the generatrix affects both the magnitude and d is t r ibut ion  of tim t empera tu re  field in tile 

shell. For example, in the SSEP (see Fig. 2) the minimum t empera tu re  points  are located near  the edge x ~ 
and in its neighborhood, tlm tempera ture  gradient is greatcr than tha t  in the  conical shell (see Fig. 1) and the 
SSOH (see Fig. 3). Moreover, tile inininmm temperatures that  correspond to curves 3 and 6 in Fig. 3 (lifter 

by 2.9~ and those in Figs. 1 and 2 (lifter by 18.2 and 19.6~ respectively. Consequently, for certain values 

of the parameter  c close to tile limiting valu('s (c --* c '  = 0.75R~ a por t ion  of curve 3 lies below curve 6 for 
tile SSOH (in Figs. 1-3, curve 6 lies below curw~ 3). Consequently, tile choice of tim reinforcenmnt variant 

that  ensures the most intense heat  removal from the structure depends on the shell geometry. 

As was noted above, the SSEP and the SSOH degenerate into conical shells as c -~ - ~  and c --* c ~ 
respectively [see (3.2)-(3.5)]. Indeed, curve 7 in Fig. 2 refers to c = - 1 0 R  ~ and the meridional reinforcement; 
a comparison of this curve and curve 2 in Fig. 1 (the conical shell reinforced in the meridional direction) 

shows tha t  the temperatures  differ insignificantly, tim difference between their minimum values being 0.6~ 
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Curves 8 and 9 in Fig. 3 refer, respectively, to c /R ~ = 0 and -1  of the SSOH reinforced in the asymptotic 
directions (as c ~ c o = -1 .5R ~ tile SSOH degenerates into a conical shell and  the asymptotic directions 
tend to meridional directions: ak --* 0). The minimum temperature values in curves 8 and 9 (see Fig. 3) 
differ from those in curve 2 (see Fig. 1) by -25.3 and -4.8~ respectively. Consequently, as c tends to tile 
limiting wdues [see (3.2~-(3.5)], the SSEP temI)erature is the upper bound and the SSOH temperature is the 
lower temperature bound in the conical shell for the corresponding reinforcement structures. 

If the mininmm condition for the lowest temperature is used as a thermophysical criterion of effective 
reinforcement of a tubular shell of fixed geometry, the spiral reinforcement with a winding angle ctt: = =t:7r/3 
is the best variant, which is seen from Figs. 1-3 (curves 4); if the shell geometry is varied, tile best variant 
is tile SSOH with tile above-mentioned reinforcement, for which the minimum temperature is close to room 

temI)erature (Tmi, = 38.6~ 
It is noteworthy that  not only the reinh)rcenmnt structure and the geometry 1)ut also the boundary 

conditions for the temperature affect the teml)erature distribution. We consider, for exmnple, the SSEP with 
the initial geometrical l)arameters (c --- -0 .01R ~ and specify the temperature  and the zero heat  fl(LX at tile 
edge x~ 

T(x ~ = 25~ q,(:r ~ -- 0. (3.12) 

Figure 5 shows the temperature distribution in this shell for different reinforcement structures (the 
curve numbers correspomt to those in Fig. 2). Comparing diagrams in Figs. 2 and 5, we infer that  the 
change in the boundary conditions leads to quantitative and qualitative changes in the temperature field 
in tim shell. For example, for boundary conditions (3.11) (see Fig. 2). the most intense heat removal from 
the shell corresponds to the spiral reinforcement with angles of a~: = =t=7r/3 (curve 4 in Fig. 2), whereas, for 
boundary conditions (3.12), this result.corresponds to the meridional reinforcement (ak = 0) characterized 
by a large value of H~ (curve 6 in Fig. 5). Consequently, tile reinforcement s t ructure that  ensures tile most 
intense heat removal from tile stroll for one set of 1)oundary conditions might be not optimal for another set 
of t)oundary conditions. For boundary conditions (3.12) and different initial data ,  the discrepancy between 
tile teml)eratures amounts to hundreds of degrees (see Fig. 5) instead of tens of degrees a,s in tile case o[ 
boundary conditions (3.1I) (see Fig. 2). Moreover, the effect of the shell shape is more pronounced fbr 
boundary conditions (3.12) than for boundary conditions (3.11). For example, for boundary conditions (3.12) 
and different initial data (Vt, Ht ), the SSOH and SSEP temt)eratures (lifter by severalfold (by hundreds an(l 
thousands of (tegT~S) instead of tens of degre,~,s, whi('h is the case of conditions (3.11) (see Figs. 2 and 3), 
the reinforcement structures and heat-exchange regime being the santo. 

Diagrams in Fig. 5 show that  there exist wide possibilities of controlling the temperature fiehl in 
tubular shells; therefore, various problems of target-oriented control can be formulated on a set of solutions 
of the heat-conduction problem. For example, if the temperature T(:zq) and the  heat flux ql (xl) are specified 
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at the edge x I , one can obtain the required ~alues of T(x  ~ and q,(x~ say, T(x ~ is room temperature and 
q~ (x ~ = 0 at the edge x ~ by varying the reinforcement structure. Two additional boundary conditions at the 
edge x ~ can be satisfied owing to the fact that the heat-conduction problem is linear and two free parameters 
of reinforcement exist: the direction c~k and the cross-sectional dimension of the tubes "'l (or Hi). In the 
classical heat-conduction problems of solids, these conditions at the edges of a shell cannot be satisfied. 

In summary, the temperature field in tubular composite structures like shells of revolution depends 
qualitatively and quantitatively on the reinforcement structure ((~k, 0,'k, rk), the thermophysical characteristics 
of'the composition phases Ac, Aik, ck, and Pk (i, k = 1, 2), the fluid flow rate Vk, the geometry of the shell 
R(x t), and the thermal boundary conditions. This offers wide possibilities in designing effective reinforcenmnt 
projects and structures; in so doing, it is necessary to formulate separate problems of target-oriented control 
of the reinforcement structures for shells of different geometry and different heat actions. 
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